Chapter 10

Turbulent Viscosity Models

In this Chapter and the next we consider RANS models in which the Reynolds
equations are solved for the mean velocity field. The Reynolds stresses—
which appear as unknowns in the Reynolds equations are determined by
a turbulence model, either via the turbulent viscosity hypothesis or more
directly from modelled Reynolds-stress transport equations (Chapter 11).
Turbulent viscosity models are based on the turbulent viscosity hypoth-
esis, which was introduced in Chapter 4 and has been used in subsequent
chapters. According to the hypothesis, the Reynolds stresses are given by

oUi) | 9(U;)
(uius) = 3hbi; — vr (ax » U0). (10.1)
or, in simple shear flow, the shear stress is given by
() = —vy agf‘ (10.2)

Given the turbulent viscosity field vy (x,t), Eq. (10.1) provides a most con-
venient closure to the Reynolds equations, which then have the same form
as the Navier-Stokes equations (Eq. 4.46 on page 96). It is unfortunate,
therefore, that for many flows the accuracy of the hypothesis is poor. The
deficiencies of the turbulent viscosity hypothesis—many of which have been
mentioned above—are reviewed in Section 10.1.

If the turbulent viscosity hypothesis is accepted as an adequate approx-
imation, all that remains is to determine an appropriate specification of the
turbulent viscosity vr(x,¢). This can be written as the product of a velocity
u*(x,t) and a length £*(x, t)

vr = u'l¥, (10.3)
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and the task of specifying v is generally approached through specifications
of u* and ¢*. In algebraic models (Section 10.2)—the mixing-length model,
for example—/¢* is specified based on the geometry of the flow. In two-
equation models (Section 10.4)—the k-e model being the prime example—
u* and £* are related to £ and e for which modelled transport equations are
solved.

10.1 Turbulent Viscosity Hypothesis

The turbulent viscosity hypothesis can be viewed in two parts. First, there
is the intrinsic assumption that (at each point and time) the Reynolds-stress
anisotropy a;; = (uju;) — %kéij is determined by the mean velocity gradients
d(U;)/0xj. Second, there is the specific assumption that the relationship
between a;; and o(U;)/0x; is

Ui , o{Uj)
(uiug) — $kdij = —vr <8—:1:; + a—mj ; (10.4)
or, equivalently,
aij = —2v7S;j, (10.5)

where S'ij is the mean rate-of-strain tensor. This is, of course, directly
analogous to the relation for the viscous stress in a Newtonian fluid:

*(Tij + P(Sij)/p = *ZVSZ'J'. (106)

10.1.1 Intrinsic Assumption

To discuss the intrinsic assumption we first describe a simple flow in which
it is entirely incorrect. Then it is shown that, in a crucial respect, the
physics of turbulence is vastly different from the physics of the molecular
processes that lead to the viscous stress law (Eq. 10.6). But finally, it is
observed that for simple shear flows, the turbulent viscosity hypothesis is
nevertheless quite reasonable.

Axisymmetric Contraction. Figure 10.1 is a sketch of a wind-tunnel
experiment, first performed by Uberoi (1956), to study the effect on turbu-
lence of an axisymmetric contraction. The air flows through the turbulence-
generating grid into the first straight section, in which the mean velocity (U7)
is (ideally) uniform. In this section there is no mean straining (S;; = 0),
and the turbulence (which is almost isotropic) begins to decay.
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Figure 10.1: Sketch of an apparatus, similar to that used by Uberoi (1956) and
Tucker (1970), to study the effect of axisymmetric mean straining on grid turbu-
lence.

Following the first straight section there is an axisymmetric contrac-
tion which is designed to produce a uniform extensive axial strain rate,
S11 = 0(U1)/0x1 = Sy, and hence uniform compressive lateral strain rates,
Soy = S33 = f%SA. The quantity Syk/e (evaluated at the beginning of
the contraction) measures the mean strain rate relative to the turbulent
time scale. Figure 10.2 shows measurements of the normalized anisotropies
(bij = (uuy)/(upug) — %51-]- = La;j/k) from the experiment of Tucker (1970)
with Sy\k/e = 2.1. Also shown in Fig. 10.2 are DNS results for S\k/e = 55.7
obtained by Lee and Reynolds (1985). For this large value of S)k/e, rapid
distortion theory (RDT, see Section 11.4) accurately describes the evolution
of the Reynolds stresses. According to RDT, the Reynolds stresses are de-
termined, not by the rate of strain, but by the total amount of mean strain
experienced by the turbulence. In these circumstances the turbulence be-
haves, not like a viscous fluid, but more like an elastic solid (Crow 1968):
the turbulent viscosity hypothesis is qualitatively incorrect.

In the experiment depicted in Fig. 10.1, following the contraction there
is a second straight section. Since there is no mean straining in this section,
the turbulent viscosity hypothesis inevitably predicts that the Reynolds-
stress anisotropies are zero. But the experimental data of Warhaft (1980)
show instead that the anisotropies generated in the contraction decay quite
slowly, on the turbulent timescale k/e (see Fig. 10.2). These persisting
anisotropies exist, not because of the local mean strain rates (which are
zero), but because of the prior history of straining to which the turbulence
has been subjected.

Evidently, for this flow, both in the contraction section and in the down-
stream straight section, the intrinsic assumption of the turbulent viscosity
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Figure 10.2: Reynolds-stress anisotropies during and after axisymmetric straining.
Contraction: experimental data of Tucker (1970), Sxk/e = 2.1; V DNS data of Lee
and Reynolds (1985), Sxk/e = 55.7; flight time ¢ from the beginning of the con-
traction is normalized by the mean strain rate Sy. Straight section: experimental
data of Warhaft (1980); flight time from the beginning of the straight section is
normalized by the turbulent timescale there.

hypothesis is incorrect: the Reynolds-stress anisotropies are not determined
by the local mean rates of strain.

Comparison with Kinetic Theory. Simple kinetic theory for ideal gases
(see, e.g., Vincenti and Kruger 1965, Chapman and Cowling 1970) yields the
Newtonian viscous stress law (Eq. 10.6), with the kinematic viscosity given
by

C), (10.7)

|2

N|—

where C' is the mean molecular speed, and X is the mean free path. It is
natural to seek to justify the turbulent viscosity hypothesis through analogy
with kinetic theory, and hence to give physical significance to u* and ¢* by
analogy to C' and X. But a simple examination of the different timescales
involved shows that such an analogy has no general validity.

In simple laminar shear flow (with shear rate OU, /0zo = S =U/L), the
ratio between the molecular timescale A\/C and the shear timescale S~ is

A AU

=8 = > = ~ KnMa, 10.8

c° e~ (10.8)
which is typically very small (e.g., 107'%, see Exercise 10.1). The significance
of the molecular timescale being relatively minute is that the statistical state
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of the molecular motion rapidly adjusts to the imposed straining. In con-
trast, for turbulent shear flows, the ratio of the turbulent timescale 7 = k/e
to the mean shear timescale S~! is not small: in the self-similar round jet
Sk/e is of about 3 (Table 5.2 on page 135); in homogeneous turbulent shear
flow experiments it is typically 6 (Table 5.4 on page 162); and in turbulence
subjected to rapid distortions it can be orders of magnitude larger. Conse-
quently, as already observed, turbulence does not adjust rapidly to imposed
mean straining, and so (in contrast to the case of molecular motion) there
is no general basis for a local relationship between stress and rate of strain.

Simple Shear Flows. The example of rapid axisymmetric distortion and
the timescale considerations given above show that, in general, the turbulent
viscosity hypothesis is incorrect. These general objections notwithstanding,
there are important particular flows in which the hypothesis is more rea-
sonable. In simple turbulent shear flows (e.g., the round jet, mixing layer,
channel flow or boundary layer) the turbulence characteristics and mean
velocity gradients change relatively slowly (following the mean flow). As a
consequence, the local mean velocity gradients characterize the history of
the mean distortion to which the turbulence has been subjected; and the
Reynolds-stress balance is dominated by local processes—production, dissi-
pation, pressure-rate-of-strain—with the non-local transport processes being
small in comparison (see e.g., Figs. 7.35-7.38 on pages 324-325). In these
circumstances, then, it is more reasonable to hypothesize that a relationship
exists between the Reynolds stresses and the local mean velocity gradients.

An important observation is that in these particular flows (in which
the turbulence characteristics change slowly following the mean flow) the
production and dissipation of turbulent kinetic energy are approximately
in balance, ie., P/e = 1. In contrast, in the axisymmetric contraction
experiment (Fig. 10.1), in the contraction section P/e is much greater than
unity, while in the downstream straight section P/e is zero: in both of these
cases the turbulent viscosity hypothesis is incorrect.

Gradient Diffusion Hypothesis. Related to the turbulent viscosity hy-
pothesis is the gradient diffusion hypothesis

(ug) = ~T'rV(¢), (10.9)

according to which the scalar flux (u¢’) is aligned with the mean scalar gra-
dient (see Section 4.4). Most of the observations made above apply equally
to the gradient diffusion hypothesis. In homogeneous shear flow it is found
that the direction of the scalar flux is significantly different from that of the
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mean gradient (Tavoularis and Corrsin 1985). But in simple 2D turbulent
shear flows (in the usual coordinate system) the scalar equation

(vg') = —FTM, (10.10)
dy
can be used to define I';, and thus no assumption is involved (for this com-
ponent). The turbulent Prandtl number o can be used to relate v and
Ty, ie, 'y = vp/or; and for simple shear flows, o is of order unity (see,
e.g., Fig. 5.34 on page 168).
Both vy and 'y can be written as the product of a velocity scale and a
length scale (Eq. 10.3). They can also be expressed as the product of the
square of a velocity scale and a time scale

Iy = u*T*, (10.11)

As shown in Section 12.4, in ideal circumstances, I'; can be related to statis-
tics of the turbulence: u* is the r.m.s. velocity u’, and T* is the Lagrangian
integral timescale 77, (see Eq. 12.158 on page 514).

Exercise 10.1 According to simple kinetic theory (see, e.g., Vincenti
and Kruger 1965) the kinematic viscosity of an ideal gas is

va $CON, (10.12)

and the mean molecular speed C is 1.35 times the speed of sound
a. Show that the shear rate S = U/L normalized by the molecular
timescale \/C' is

% ~ 0.7MaKn, (10.13)

where the Mach number and Knudsen number are defined by Ma =
U/a and Kn = \/L.

Use the relation a® = yp/p (with v = 1.4) to show, that the ratio of
the viscous shear stress 712 to the normal stress (pressure) is

T2 0.9MaKn. (10.14)
P
Using the values a = 332m/s and v = 1.33 x 107°m? /s (corresponding
to air at atmospheric conditions) and S = 1s7!, obtain the following
estimates:

59%x107%m, A/C =1.3x107"%,

1.3 % 10710, % =1.7x 10710, (10.15)
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